
UN
CO

RR
EC

TE
D

PR
OO

F

Expert Systems With Applications xxx (xxxx) 114529

Contents lists available at ScienceDirect

Expert Systems With Applications
journal homepage: http://ees.elsevier.com

Memetic Harris Hawks Optimization: Developments and perspectives on project
scheduling and QoS-aware web service composition☆

ChenYang Li a, Jun Li a,⁎, HuiLing Chen a, Ali Asghar Heidarib,c,1

a College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China
b School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
c Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore

A R T I C L E I N F O

Article history:
Received 28 April 2020
Received in revised form 13 October 2020
Accepted 20 December 2020
Available online xxx

Keywords
Harris hawks optimization
Evolution-based algorithm
Gaussian probability distribution
Numerical optimization functions
QoS-aware web service composition
Resource-constrained project scheduling

A B S T R A C T

Harris hawks optimization (HHO) is one of the leading optimization approaches due to its efficacy and
multi-choice structure with time-varying components. The HHO has been applied in various areas due to its sim-
plicity and outstanding performance. However,the original HHO can be improved and evolved in terms of con-
vergence trends, and it is prone to local optimization under certain circumstances. Therefore, the performance
and robustness of the algorithm need to be further improved. In our research, based on the core principle of evo-
lutionary methods, we first developed an elite evolutionary strategy (EES) and then utilized it to advance HHO’s
convergence speed and ability to jump out of the local optimum. We named such an enhanced hybrid algorithm
EESHHO in this paper. To verify the effectiveness and robustness of the EESHHO, we tested it on 29 numeri-
cal optimization test functions, including 23 classic basic test functions and 6 composite test functions from the
IEEE CEC2017 special session. Moreover, we apply the EESHHO on resource-constrained project scheduling and
QoS-aware web service composition problems to further validate the effectiveness of EESHHO. The experimen-
tal results show that proposed EESHHO has faster convergence speed and better optimization performance by
comparing it with other mainstream algorithms. The supplementary info and answers to possible queries will be
publicly available at https://aliasgharheidari.com/publications/EESHHO.html. Also, the codes and info of HHO
are available at: https://aliasgharheidari.com/HHO.html.

© 2020

1. Introduction

As technological developments grow and economic activities in-
crease, governments face more and more new problems and projects
that need to be understood theoretically and practically (Hu et al.,
2020; Qiu et al., 2019; Zhang, Chen, Wang, Liu, & Chen, 2021).
For instance, such real-world projects in the product oil pipeline have
many variables, limited resources, and budgets (Liu, Li, Cai, & Peng,
2019). Another instance is disaster-relief scenarios and tourist indus-
try that we cannot obtain all resources similar to commonplace cases
(Fu, Fortino, Li, Pace, & Yang, 2019; Lv, Li, Xu, & Yang, 2020).
In such cases, decision support systems also come into the process for
subsequent big data analysis, which also includes more factors into
the problem (Lv & Qiao, 2020). In the area of routing protocols, we

☆ This document is the results of the research project funded by the Science and Tech-
nology Plan Project of Wenzhou, China (No. 2020G0055).
⁎ Corresponding author.

E-mail addresses: lcy.yang@foxmail.com (C. Li); omama@wzu.edu.cn (J. Li);
chenhuiling.jlu@gmail.com (H. Chen); as_heidari@ut.ac.ir, aliasgha@comp.nus.edu.sg,
t0917038@u.nus.edu (A.A. Heidari)

1 https://aliasgharheidari.com

should also optimize many variables regarding the performance of the
network’s energy and reliability (Fu, Fortino, Pace, Aloi, & Li,
2020). Therefore, based on such examples, real-world problems always
have limited resources and budgets, and there is a restriction on their
variables (bound-constrained), and searching for some feasible optimal
solutions during a reasonable time is required.

Finding feasible and optimal solutions to real-world problems us-
ing computationally efficient techniques and valid models is the fo-
cus of attention in machine learning, environmental modeling (Wang,
Zhang, van Beek, Tian, & Bogaard, 2020), image processing sys-
tems (Chao, Kai, & Zhiwei, 2020), geographical information systems
(Lv, Li, Lv, & Xiu, 2019), medical expert systems (Xie et al., 2018),
healthcare expert systems (Wen, Zhang, Liu, & Lei, 2017), and air
pollution monitoring systems (Lv, Liu, Wang, Liu, & Shang, 2020;
Zhu, Pang, Chevallier, Wei, & Vo, 2019). In the past decades, vari-
ous optimization algorithms have been proposed to solve different prob-
lems. According to different optimization strategies, optimization algo-
rithms can be divided into two categories: exact algorithm and approx-
imate algorithm (Xue, Zhu, & Wang, 2019; H. Zhang, Qiu, Cao,
Abdel-Aty, & Xiong; X. Zhang et al., 2018; Z. Zhang, Liu, Zhou,
& Chen, 2020). Exact algorithms have been widely studied and ap-
plied in many problems when we have a small sample, or the case’s di-
mension is not high (Zhao & Li, 2020; Wu, Xiong, Cheng, & Xie,

https://doi.org/10.1016/j.eswa.2020.114529
0957-4174/© 2020.

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

2 C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529

2020). Their design principles are generally based on dynamic program-
ming, branch and bound and backtracking methods (Zeng, Liu, Wang,
& Xiao, 2019); consequently, they usually can obtain the optimal so-
lutions (Neapolitan & Naimipour, 2009; Neapolitan & Naimipour,
2009). However, they often cost much more time and space to solve the
problem with large search space and complex structure by comparing
with approximate algorithms (Chen, Qiao, Xu, Feng, & Cai, 2019) .

Approximation optimization algorithms, which can obtain a feasible
solution in large-scale search space with linear time, have been received
more and more attention in recent years. Traditional approximation al-
gorithms, such as the greedy algorithm, gradient descent method, and
newton method, can be easily implemented and have been successfully
applied to many optimization problems (Neapolitan & Naimipour,
2009; Zhang, Qu, Li, Luo, & Xu, 2020). However, the efficiency of
such traditional approximation algorithms depends on the mathemati-
cal nature of the problem itself, so they are often time-consuming and
have poor scalability (Baykasoglu, 2012; Baykasoglu, 2012). There-
fore, a more flexible and efficient algorithm is needed to overcome this
deficiency (Zhu, Ma, Xie, Chevallier, & Wei, 2018). Based on this
motivation, meta-heuristic algorithms that are simulating natural phe-
nomena are receiving more and more attention nowadays (Beheshti,
2013). Although meta-heuristic algorithms are also a kind of approx-
imation algorithms, they are different from the traditional approxima-
tion algorithms in that they do not need to consider the mathematical
properties of the optimization problem in the process of problem-solv-
ing, and they have the characteristics of low complexity, high efficiency
and high scalability (Cao et al., 2019; Cao, Fan, et al., 2020; Cao,
Zhao, Gu, Ling, & Ma, 2020) .

Meta-heuristic algorithms, which are derived from the inspiration
of different natural phenomena, can be mainly divided into three cate-
gories: evolution-based, physical-based, and swarm-based (Mirjalili &
Lewis, 2016; Sun, Yang, Yang, & Xu, 2019). The evolution of species
in nature mainly inspires Evolution-based algorithms. Through the con-
tinuous evolution of individuals, individuals with poor fitness are elimi-
nated, and individuals with high fitness are constantly updating the so-
lution. One of the most popular algorithms based on evolutionary meth-
ods is Genetic Algorithms (GA) (Goldberg & Holland, 1988; Gold-
berg & Holland, 1988). The GA simulates the natural selection of the
Darwinian evolution and the mechanism of biological evolution in ge-
netics. The GA assumes that each individual in the population is a chro-
mosome, and new individuals are generated through continuous evo-
lution. The new individuals retain old individuals’ excellent genes and
continue to evolve to achieve the goal of global optimization. Other
popular evolution-based algorithms include Evolutionary Strategy (ES)
(Rechenberg, 1978; Rechenberg, 1978), Genetic programming (GP)
(Banzhaf & Koza, 2000; Banzhaf & Koza, 2000), Differential Evolu-
tion (DE) (Storn & Price, 1997; Sun, Xu, & Jiang, 2020), etc.

Physics-based algorithms mainly simulate physical phenomena in na-
ture. Simulated Annealing (SA) (Hwang, 1988) is one of the most popu-
lar algorithms. The starting point of SA is based on the annealing process
of solid matter in physics, which consists of three parts: heating process,
isothermal process, and cooling process. In addition, there are lots of
other physics-based algorithms such as Gravitational Search Algorithm
(GSA) (Rashedi, Nezamabadi-pour, & Saryazdi, 2009), and Central
Force Optimization (CFO) (Formato, 2008).

Swarm-based algorithms are inspired by the social behavior of bio-
logical groups in nature. These optimization algorithms are simulated
through the complex social group behaviors such as competition and
cooperation between groups to achieve the purpose of optimization. A
typical representative algorithm based on the swarm method is Particle
Swarm Optimization (PSO) algorithm (Kennedy & Eberhart, 2002).
PSO mimics birds’ collective behavior cooperatively searching food,

and each group member constantly changes its search pattern by learn-
ing their own and other members’ experiences. By comparing with the
evolutionary-based and physics-based algorithms, Swarm-based algo-
rithms have been proven to be very competitive and will play a much
more important role in future optimization field (Mirjalili & Lewis,
2016). Table 1 lists popular swarm intelligence optimization algo-
rithms from 1995 to 2019.

From Table 1, we can see that the HHO1 is the latest swarm-based
meta-heuristic algorithm which was proposed in 2019. Heidari et al.,
2019 valid the effectiveness and robustness of HHO by comparing it
with several other meta-heuristic algorithms on a limited number of nu-
merical optimization functions and apply it to several real-world engi-
neering problems. Meanwhile, due to its simplicity, broad applicabil-
ity, and outstanding performance, HHO has been improved and applied
to find viable solutions for many contemporary optimization problems.
Jia, Lang, Oliva, Song, and Peng, 2019 proposed a dynamic HHO
with a mutation mechanism, named DHHO/M, to solve the problem of
satellite image segmentation. Bao, Jia, and Lang, 2019 proposed a
hybrid algorithm named HHO-DE, which solves the color image mul-
tilevel thresholding segmentation. Chen, Jiao, Wang, Heidari, and
Zhao, 2020 proposed an Enhanced HHO (EHHO) based on the chaotic
drifts in the vicinity of the best solution and an opposition-based strat-
egy, which can improve the diversity and exploration ability of the al-
gorithm population, thereby effectively identifying unknown parameters
in photovoltaic model components. Ridha, Heidari, Wang, and Chen,
2020 presents a Boosted HHO (BHHO) algorithm, which combines the
flower pollination algorithm with the strong variation scheme of differ-
ential evolution, for the parameter identification of a single diode solar
cell model. Wei et al., 2020 proposes an effective predictive model for
intelligent entrepreneurial intentions based on an improved HHO opti-
mized Kernel Extreme Learning Machine (KELM) to provide a rational
reference for the development of talent development programs and guid-
ance of students’ entrepreneurial intentions. Chen et al., 2020 presents
a powerful variant of the Harris Hawk optimization algorithm that inte-
grates chaotic strategies, topological multiple group strategies, and dif-
ferential evolutionary strategies. Although these works play a significant
role in promoting the development of HHO, according to the No Free
Lunch (NFL) theorem (Wolpert & Macready, 1997), we still need to
improve HHO so that we can deal with other complex real-world op-
timization problems. Besides, when solving some complex optimization
problems, the HHO algorithm still has the problem of slow convergence
speed or easy to fall into local optimum, which seriously affects the op-
timization performance.

As an extension of meta-heuristic algorithms, hybrid-based ap-
proaches (Fu, Pace, Aloi, Yang, & Fortino, 2020) aims to com-
bine the advantages of different meta-heuristic algorithms to improve
the ability to deal with various complex optimization problems. At pre-
sent, a hybrid-based algorithm is one of the most interesting trends
in memetic algorithms (Kang, Li, & Ma, 2011). Therefore, in our
work, we utilize the advantages of evolution-based and swarm-based
algorithms to present a novel hybrid-based meta-heuristic algorithm
(EESHHO) further to improve the optimization performance in some
specific scenarios. The main contributions of this paper are as follows:

• A novel exploitation strategy, based on the principle of evolu-
tion-based meta-heuristic algorithms named Elite Evolutionary Strat-
egy (EES), is proposed to improve specific swarm-based algorithms’
optimization performance.

• By dynamically combining the EES and the original HHO, we propose
a novel hybrid-based meta-heuristic algorithm named EESHHO and
analyze its computational complexity.

1 https://aliasgharheidari.com/HHO.html

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 3

Table 1
Efficient swarm-based algorithms.

Algorithms Developers Inspiration Year

Particle swarm optimizer
(PSO)

Kennedy and
Eberhart (2002)

Bird flock 1995

Differential Evolution (DE) Storn and Price
(1997)

Vectors 1997

Ant colony optimization
(ACO)

Dorigo et al. (2006) Ant colony 2006

Artificial Bee Colony (ABC) Karaboga and
Basturk (2007)

Honey Bees 2007

Biogeography-based
optimization (BBO)

Simon (2008) Creation-
Combination

2008

Cuckoo Search (CS) Yang and Deb
(2009)

Cuckoo 2009

Bacterial Foraging
Optimization (BFO)

Das et al. (2009) Bacterial life 2009

Fruit fly Optimization
(FOA)

Pan (2012) Fruit fly 2012

Harris Hawks Optimization
(HHO) b

Heidari et al. (2019) Harris hawks 2019

Slime mould algorithm
(SMA) a

Li et al. (2020) Slime mould 2020

b https://aliasgharheidari.com/HHO.html

• To verify the effectiveness and robustness of EESHHO, we evaluate
it by solving 29 mathematical optimization problems and then ap-
ply it to the resource-constrained project scheduling problem and
QoS-aware web service composition problem. Experimental results
show that EESHHO is more competitive than other mainstream
meta-heuristic algorithms.

The rest of this paper is organized as follows: Section 2 describes
the proposed EESHHO. The results of EESHHO in solving different
benchmark cases (numerical optimization functions) and two real-world
case studies (Resource-constrained project scheduling problem and
QoS-aware web service composition problem) are presented in Section
3. Finally, Section 4 summarizes the concluding observations and future
work.

2. The proposed HHO-based method

This section presents a novel hybrid-based meta-heuristic algorithm
named EESHHO for dealing with the problems described above. To be
specific, we first propose the Elite Evolutionary Strategy (EES) based
on evolution-based meta-heuristic algorithms’ core principles and then
combine it with HHO dynamically and intelligently. We present the
structure of this variant along with the core equations of the basic HHO.

2.1. Elite evolution strategy

To overcome the HHO algorithm’s shortcomings, we designed a new
exploitation strategy (EES) for the HHO based on the evolution-based
meta-heuristic algorithms’ core principle. DE (Storn & Price, 1997)
and GA (Goldberg & Holland, 1988) are the two famous evolu-
tion-based meta-heuristic algorithms with three same basic operations:
selection, crossover, and mutation. However, GA uses binary coding to
construct a chromosome, while DE has a more straightforward struc-
ture and no coding operation. GA and DE have been proven to be ef-
fective in various optimization problems, and show great potential in
some specific complex optimization problems (Wang, Zeng, & Chen,
2015; Goldberg, 2008; Wang, Lee, & Ho, 2007). Based on the ba-
sic idea of DE and GA, EES is designed to extend the advantages of
an evolutionary algorithm to HHO. This strategy includes two different
methods: elite natural evolution and elite random mutation. It aims to

overcome the HHO’s slow convergence speed problem and easily fall
into the local optimum.

The pseudo-code of EES is shown in Algorithm. 1and the details are
described as follows.

Algorithm 1 Elite Evolution Strategy

1: Input: a chromosome
2: Update the value of random number between
3: If() then
4: Use elite natural evolution(described in Section 2.1.1)
5: Else If() then
6: Use elite random mutation(described in Section 2.1.2)
7: End If
8: Output: an evolved chromosome

2.1.1. Elite natural evolution
The core principles of Elite natural evolution are gene crossing and

gene mutation. Gene crossing depends more on the excellent genes of
multiple excellent chromosomes, and gene mutation mainly refers to a
small range of local variation. Therefore, this method emphasizes local
mining’s ability, improving the convergence rate of the original HHO.
The conceptual simulation of this method is shown in Fig. 1, and it con-
sists of the following three steps:

• Elitist selection. Three elite solutions (the optimal solutions appear-
ing during the evolution) are retained in the evolution of the al-
gorithm, and they are named , and , respectively. The re-
lationship between the fitness values of the three elite solutions is:

(minimum is optimal).
• Gene cross-recombination of elite chromosomes. Suppose that

, and as a chromosome composed of multiple genes, each dimen-
sion representing a gene. As you can see in Fig. 1. First, we randomly
select genes of and genes of to generate a new chro-
mosome and then randomly select genes of and

genes of to cross to generate a new chromosome . Its
mathematical description is shown below:

(1)

where the symbol indicates the cross-recombination operation of
chromosomal genes. The symbol indicates how many genes are ran-
domly selected from each chromosome for cross-recombination. sp is
a variable that controls the proportion of genes on the chromo-
some.

• Gaussian local mutation. We use a Gaussian sequence (
) to locally perturb the chromosome to produce a new chromo-
some (refer to Fig. 1). The mathematical description is as follows:

(2)
where GS is the sequence vector, which conforms to Gaussian proba-
bility distribution (). X is the chromosome waiting to
be updated. is the new chromosome calculated from Eq. (1). The

represents the operation of taking the absolute value. is the lat-
est updated chromosome.

In this method, three elite chromosomes are selected for cross-re-
combination of genes, so that the new chromosome can inherit more
excellent genes from different parents. However, the new chromosome
contains only excellent genes and does not allow it to evolve further.
Therefore, we introduce the Gaussian sequence to make local-wide mu

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

4 C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529

Fig. 1. Schematic illustration of the method of the elite natural evolution.

tations of all chromosome genes, thereby promoting the chromosome’s
evolutionary efficiency. Gauss probability distribution is a critical and
widely used probability distribution in mathematics, physics, and en-
gineering. Meanwhile, it has also been successfully applied in other
meta-heuristic algorithms (Luo et al., 2018; Bäck & Schwefel, 1993;
Xu et al., 2019). Fig. 2 shows a point set graph (connected by lines)
obeying the Gaussian probability distribution with . The
graph shows that this point set’s distribution range is concentrated
around 0, and the generated values are mostly between and
. Therefore, we use the distribution characteristics of the Gaussian se-
quence to provide a variation characteristic of local fluctuation for
in Eq. (2). In conclusion, this method absorbs the elite chromosome’s
excellent genes as the basis and introduces Gaussian mutation for local
disturbance, emphasizing the exploitation characteristics of elite evolu-
tion strategy more.

Next, a numerical example is then introduced to briefly describe the
process of elite evolution strategy. Suppose there are three elite indi-
viduals = = and = (integers are
used for ease of understanding). Meanwhile, enter the individual X=

that needs to be updated. First, and generate =
through a cross-genetic recombination operation (see Eq. (1)

for details). Then, and perform a cross-combination operation
(see Eq. (1) for details) to generate = . Finally, the local
mutation of Gaussian is used to generate a new individual

Fig. 2. Gaussian probability distribution () during two runs and 500 cycles.

, which is obtained by Eq. (2). In detail, first a set of
Gaussian sequence vectors GS= is generated. then vec-
tor S= is derived by subtracting individual vector X=
from vector = and taking the absolute value. The new in-
dividual vector is generated using Eq. (2).

2.1.2. Elite random mutation
The purpose of elite random mutation is to mutate some genes of

elite chromosomes within the search scope and provide stronger explo-
ration ability for the algorithm in the later stage of evolution to improve
the ability to jump out of local optimum. The conceptual diagram of this
method is shown in Fig. 3, and the detailed implementation steps are
described below.

• Randomly mutated chromosome. We generate a brand new chromo-
some in the search space, which is unpredictable and should also
maintain a certain relationship with the elite chromosome. Because
this can reduce the disadvantages of non-convergence caused by ex-
cessive randomness while maintaining exploration. The mathematical
formula we designed is described as follows:

(3)

where CL represents the center position vector of the search space,
is the elite chromosome (described in Section 2.1.1). represents
a number, which is generated by Gaussian probability distribution (

). It can be seen from Fig. 4 that the only difference be-
tween this Gaussian probability distribution and Gaussian probability
distribution () mentioned in the previous section (see
Section 2.1.1) is that the value is larger. Therefore, it can provide a
wider range of fluctuations in Eq. (3). This random chromosome mu-
tation is unpredictable under the influence of the Gauss number. How-
ever, we can find that for a single gene (a single dimension), it is more
likely to occur between the central position and the elite chromosome

(position X in Fig.3), around the elite chromosome (position F),
between the central position and the opposite position of (position
Y), and around the opposite position of (position Z).

• Gene cross-recombination. of the current elite chromo-
some genes and of randomly mutated chromosome
genes are randomly selected for cross recombination. The mathemati-
cal description is as follows:

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 5

Fig. 3. Schematic illustration of the method of the elite random mutation.

Fig. 4. Gaussian probability distribution () during two runs and 500 cycles.
(4)

where sp is a variable that controls the proportion of genes on the
chromosome, the symbol indicates the cross-recombination opera-
tion of chromosomal genes, The symbol indicates how many genes
are randomly selected from a chromosome for cross-recombination.

is obtained by Eq. (3).

The elite random mutation emphasizes more on the potential of ex-
ploration, but it will still retain some genes of the elite chromosomes,
and the proportion of these excellent genes will continue to adjust with
the evolution process to ensure timely convergence. A simple numeri-
cal example was used to illustrate the process of elite random mutation.

First, we set the center of search space to CL= , which has an
upper and lower boundary of 20 and -20, respectively. The elite chro-
mosome vector = , the Gaussian number = . Subse-
quently, we generated = by Eq. (3). Finally, we calcu-
lated the new individual position vector = by Eq. (4).

2.1.3. Parameter setting
There is a critical control parameter of sp in the EES strategy. It con-

trols the proportion of the best parental genes in the entire new chromo-
some and controls the entire EES transition between exploration and ex-
ploitation. When sp is larger, producted new chromosomes tend to con-
tain more mutated genes, and conversely, the new chromosomes contain
more genes from the best parent. To achieve an adaptive control of the
convergence process of the EES, the parameter sp is designed, as show
in Eq.(5).

(5)

where indicates that random number between (-1, 1) and it
changes into each evolution. T is the maximum number of evolutions,
and t is the current number of evolutions. Fig .5 shows the distribution
of points (connected by lines) in the algorithm’s evolution. For example,
sp may appear anywhere between 0 and 1 at the initial point of evolu-
tion, and it may appear anywhere between 0 and 0.5 in the middle stage
of evolution. In short, with the end of the evolution, sp also tends to 0,
thus ensuring the convergence of EES.

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

6 C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529

Fig. 5. Distribution of sp during two runs and 1000 evolutions.

2.2. Elite Evolution Strategy with Harris Hawks Optimization (EESHHO)

Harris hawks optimization is a new swarm-based stochastic opti-
mizer inspired by the Harris hawks hunting prey (rabbit). It mainly seeks
the optimal solution through two exploration strategies and four ex-
ploitation strategies. Meanwhile, it uses the parameter E to adaptively
switch between the exploration and exploitation stages (Heidari et al.,
2019).

In this section, we integrate the Elite Evolution Strategy (EES) into
the exploitation phase of HHO to propose an enhanced meta-heuristic
algorithm referred to as EESHHO. The improvement point of EESHHO
compared with the original HHO is that the EES strategy replaces the
two exploitation strategies of HHO, which are the hard besiege strategy
with progressive rapid dives and the soft besiege strategy with progres-
sive rapid dives (Heidari et al., 2019). Fig. 7 reveals the core mech-
anisms of the HHO, which is still preserved in the proposed EESHHO.
Fig. 6 shows the flowchart of EESHHO. The detailed description is de-
scribed below.

Fig. 7. The core logic of HHO and proposed EESHHO.

2.2.1. Transition between exploration and exploitation
The control parameter E is used to transfer from exploration to ex-

ploitation (see Fig. 6). The mathematical description of E is shown be-
low:

(6)

where T is the maximum number of evolutions, and t represents the cur-
rent number of evolutions. is a random number between (-1,1), and
each agent updates this in each evolution. E can make the algorithm
adjust adaptively between exploration and exploitation during the evo-
lutionary process Heidari et al., 2019.

2.2.2. Exploration stage
From Fig. 6, The algorithm entered the exploration stage through

the control of E, and Harris hawks use two different exploration strate-
gies to update their position. These exploration strategies can make the
Harris hawk explore more unknown areas, thereby increasing the possi-
bility of finding a potential optimal solution. The mathematical descrip-
tion of the two exploration strategies is as follows:First strategy Harris
hawk conducts random exploration based on information about the lo-
cation of other family members. Its mathematical modeling is shown be-
low:

(7)

where is a randomly selected position vector of the Harris hawk
from the Harris hawk population. is the current Harris hawk po-
sition vector that needs to be updated. and are random numbers
between (0,1). is the position vector after is updated by
Eq. (7).Second strategy The Harris hawk uses the rabbit’s location infor-
mation and the scope of the search space for random exploration. The
mathematical modeling expression for this behavior is shown below:

(8)

where is the position vector of the rabbit(the best solution found
so far). represents the average position vector of the population.
and are randomly generated number between 0 and 1. ub represents
the upper bounds of the search space, and lb is the lower bounds. HHO
randomly switches between the two exploration strategies with 50%
probability, respectively (see Fig.7).

2.2.3. Exploitation stage
From Fig. 6, EESHHO adopts the EES (described in Section 2.1) and

two exploitation strategies of the original HHO, which are hard besiege
and soft besiege strategies. Suppose r represents the probability of the
rabbit escaping from threatening situations. When (the rabbit did
not escape successfully) we adopted the original HHO exploitation strat-
egy, and when (the rabbit successfully escaped) we adopted the
Elite Evolution Strategy. Here is a detailed explanation.

The rabbit failed to escape() At this stage we use the two core
strategies of soft besiege and hard besiege of the HHO. As follows:

• Hard besiege. When and , the rabbit failed to escape
from the encirclement and is so exhausted. Therefore, the Harris
hawk swooped directly on the rabbit. The mathematical description is
shown below:

(9)

where is the position vector of the current Harris hawk.
is the position vector of the rabbit(the best solution found so far). E is
the control parameter (see Section 2.2.1).

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 7

Fig. 6. The entire process of the EESHHO algorithm.

• Soft besiege. When and , Although the rabbit failed to
escape, it still had great energy. Hence, the Harris hawk gently sur-
rounded the rabbit to make it more exhausted, then, the Harris hawk
swooped on the rabbit. The mathematical description of the modeling
is shown below:

(10)

where J is a random number between and needs to be updated
after each evolution. J simulated the nature of rabbit motions.

The rabbit escaped successfully() At this stage, we adopted the
EES to update the Harris hawks position. From reference Heidari et
al., 2019, the original HHO used levy flight in the strategy to improve
the algorithm’s exploration ability at a later stage. Levy flight is widely
used to enhance the population diversity of meta-heuristic algorithms
(Emary, Zawbaa, & Sharawi, 2019). However, if the algorithm re-
lies too much on levy flight, it may cause the algorithm to consume too
many evolutionary times for random exploration, which will cause its
convergence speed to be too slow. Therefore, the elite natural evolution
method of EES is used to improve the convergence speed of EESHHO
(detailed in Section 2.1.1). Besides, EES’s elite random mutation is used
to continue keeping the algorithm’s later exploration capabilities (de-
tailed in Section 2.1.2).

2.3. Pseudocode of HHO and computational complexity

The pseudocode of the proposed EESHHO algorithm is reported in
Algorithm.2. Meanwhile, it can be noticed that EESHHO mainly in-
cludes three processes: initialization, Harris hawk’s evolution update
mechanism, and fitness evaluation. For EESHHO with a population size
of N. The computational complexity of the initialization process is
. The computational complexity of the fitness evaluation is ,
where T is the number of evolutions of the algorithm. Harris hawk’s evo-
lution update mechanism is the main structure of the algorithm. Its com-
putational complexity is , where D is the dimension of the
optimization problem. Hence, the computational complexity of EESHHO
is .

Algorithm 2 The pseudo-code of EESHHO

1: Initialize Harris hawks population .

2: Calculate the fitness value of each Harris hawk.
3: Get the current best solution .
4: While (Max number of evolutions)
5: For (Updated each Harris hawk position ())
6: Update , , and
7: If () then Exploration phase
8: If() then
9: Use the first exploration strategy. use Eq. (7).
10: Else If() then
11: Use the second exploration strategy. use Eq. (8).
12: End If
13: Else If () then exploitation stage.
14: If() then
15: If () then
16: Use hard besiege. use Eq. (9).
17: If () then
18: Use soft besiege. use Eq. (10).
19: End If
20: Else If() then
21: Use Elite Evolution Strategy. See Algorithm 1.
22: End If
23: End If
24: End for
25 Calculate the fitness value of each Harris hawk.
26: Update if a better solution is found.
27:
28: End while
29: Return

3. Performance study

All experiments were performed on Windows Server 2012 R2 oper-
ating system, using Intel (R) Xeon (R) CPU E5-2660 v3 (2.60 GHz) and
16GB RAM. All algorithms were coded and run on MATLAB R2014b
software. In this section, we verify the effectiveness of the novel algo-
rithm (EESHHO) through the following experiments:

(1) EESHHO was compared with other popular meta-heuristic algo-
rithms and advanced algorithms (variations of meta-heuristics) in solv-
ing 29 mathematical optimization problems to test its numerical effi-
ciency.
(2) Performance comparison between EESHHO and the existing main-
stream algorithms in solving the resource-constrained project schedul

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

8 C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529

ing (Kim & Ellis, 2010) problem and QoS-aware web service composi-
tion (Li, Zheng, Chen, Song, & Chen, 2014) problem.

3.1. Mathematical optimization problems

In this section, 29 mathematical optimization problems were used
as test cases, including 23 classical benchmark functions (Mirjalili
& Lewis, 2016) and 6 composite functions mentioned in the CEC
2017 special session (Maharana, Kommadath, & Kotecha, 2017).
Tables 2–4 summarize the 23 test cases reporting the cost function,
class (unimodal, multimodal, and fixed-dimension multimodal), range
of optimization variables, and the optimal value. Table 5 gives a brief
overview of the remaining 6 composite functions, which are described
in detail in reference Maharana et al., 2017. In Table 2–5, It is worth
noting that ”Dim” indicates the number of dimensions of the design vari-
ables, which was set to 30 except for the fixed-dimension multimodal
function. Moreover, the population number of all comparison algorithms
was set to 30, and the maximum fitness function evaluation number was
set to 300,000.

EESHHO was compared with HHO (Heidari et al., 2019), Sine Co-
sine Algorithm (SCA) (Mirjalili, 2016), Slime Mould Algorithm (SMA)2

(Li, Chen, Wang, Heidari, & Mirjalili, 2020), modified Weighted
Superposition Attraction (mWSA) (Baykasoğlu & Akpinar, 2020),
Whale Optimization Algorithm (WOA) (Mirjalili & Lewis, 2016), Grey
Wolf Optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 2014), Par-
ticle Swarm Optimization with an Aging Leader (ALCPSO) (Chen et
al., 2013), Fuzzy Self-Tuning Particle Swarm Optimization (FSTPSO)
(Nobile et al., 2017), DHHO/M (Jia et al., 2019), Hybrid Harris
Hawk Optimization Based on Differential Evolution (HHODE) (Birogul,
2019). A brief description of all the above comparison algorithms is as
follows:

• EESHHO is a novel advanced meta-heuristic algorithm based on the
HHO proposed in this research (see Section 2). The control parame-
ters use an adaptive strategy that does not require additional pre-set-
ting of other fixed parameter values.

• HHO is the original version of EESHHO. It has been compared with
many classic meta-heuristic algorithms, including PSO, DE, GA, and
so on (more details can be found in Heidari et al., 2019). Hence,
these comparison algorithms will no longer include these algorithms.
The HHO uses adaptive control parameters without pre-setting addi-
tional fixed parameter values.

• SCA is a swarm-based meta-heuristic algorithm that uses a mathemat-
ical model of sine and cosine to fluctuate outwards or towards the best
solution. It is also a self-adjusting meta-heuristic algorithm, and there
is no need to set parameter values in advance.

• SMA is a swarm-based meta-heuristic algorithm that was recently pro-
posed in 2020. This algorithm is inspired by the inherent oscillation
pattern of slime molds and proposes a positive and negative feedback
mechanism with adaptive weights to explore and exploit the algo-
rithm. It exhibits outstanding performance in different problem search
spaces (more details can be found in Li et al., 2020).

• mWSA is a more efficient algorithm proposed by improving the
heuristic algorithm Weighted Superposition Attraction (WSA)
(Baykasoğlu & Akpinar, 2015) with an operator for the target point
superposition determination process. The experimental results show
that mWSA is more robust and has better performance than the orig-
inal WSA in solving complex optimization problems (Baykasoğlu &
Akpinar, 2020).

• WOA (Mirjalili & Lewis, 2016) is a viral meta-heuristic algorithm
proposed in 2016, which mainly simulates humpback whales’ social

2 https://aliasgharheidari.com/SMA.html

Table 2
Description of unimodal test functions - .

Function Dim Range Optimum

30 [−100,100] 0
30 [−10,10] 0
30 [−100,100] 0

30 [−100,100] 0
30 [−30,30] 0
30 [−100,100] 0

+ random [0,1) 30 [−1.28,1.28] 0

behavior in nature. The algorithm is comparable to our algorithms in
terms of control complexity.

• GWO simulates the leadership and hunting mechanism of the gray
wolf. Four different leadership levels provide strong exploration per-
formance for GWO. As with these algorithms mentioned above, it is
also unnecessary to set additional fixed parameter values in advance.
However, it has a structural defect (Hu et al., 2020) that discovered
recently by Niu, Niu, and Chang (2019).

• ALCPSO is an evolutionary version of PSO (Kennedy & Eberhart,
2002). The gradual aging of individuals inspires it in the popula-
tion in nature. It adds the mechanism of aging leaders and chal-
lengers based on the PSO and improves the population’s diversity
while ensuring the speed of population convergence, thereby over-
coming PSO’s premature convergence. The parameter , which is
used to control how long a challenger temporally leads the swarm.

• FSTPSO is an evolutionary version of PSO proposed in 2017. It is a
self-adjusting PSO based on a fuzzy strategy, in which the behavior
of each particle is dynamically and automatically adjusted during the
optimization process.

• DHHO/M is an evolutionary variant of the HHO algorithm, which
uses dynamic control parameter strategy and mutation operators to
enhance the ability of the original HHO to jump out of the local opti-
mum. There are mainly two control parameters set to and SF
= .

• HHODE is an evolved version of HHO developed based on the muta-
tion strategy of the DE (Storn & Price, 1997), and the advantages of
DE and HHO are used in this algorithm, in which DE uses the muta-
tion strategy of DE/current-to-best/2 (Birogul, 2019).

All comparison algorithms run independently 30 times for each test
case, in which each time starting from different populations randomly
generated, and then the average result of these runs was obtained as
the final result. Such a condition is to avoid biased and unfair compar-
isons (Lv & Qiao, 2020; Yang et al., 2019; Shi, Wang, Tang, &
Zhong, 2020). Statistical results are reported in Tables 6–8, in which
“AVG” represents the average of 30 independent runs per test case,
and “STD” represents the standard deviation of 30 independent runs.
The best results of each test case mark in bold, and these results are
expressed in scientific notation, which only shows the decimal part’s
first four digits. Also, note that some values in the table that are the
same as the best value display but do not have a bold block are be-
cause the decimal parts that are not displayed are not the same. Mean-
while, we evaluated the comprehensive performance of all algorithms
based on all test cases, and the comprehensive performance metrics are
denoted by “CP” . Among them, we performed statistical analysis of
the experimental results using the Friedman test method (Friedman,
1937) and the Wilcoxon sign rank test (García, Fernández, Luengo, &
Herrera, 2010) to ensure that our algorithm is statistically significant.
”ARV” represents the comprehensive ranking obtained by the algorithm
through statistical analysis and performance comparison based on all

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 9

Table 3
Description of multimodal test functions - .

Function Dim Range Optimum

30 [−500,500]

30 [−5.12,5.12] 0
30 [−32,32] 0

30 [−600,600] 0

30 [−50,50] 0

30 [−50,50] 0

Table 4
Description of fixed-dimension multimodal test functions - .

Function Dim Range Optimum

2 [-65,65] 1
4 [-5,5] 0.00030

2 [-5,5] −1.0316
2 [-5,5] 0.398

2 [-2,2] 3

3 [1,3] −3.86
6 [0,1] −3.32
4 [0,10] −10.1532

4 [0,10] −10.4028

4 [0,10] −10.5363

test cases, and “+/=/−” is used to display the details of test results (ob-
tained by statistical analysis), among which “+” indicates the number
of test cases where EESHHO performs better than another comparison
algorithm. Similarly, “−”/“=” indicate the number of test cases that the
performance of EESHHO is lower than/equal to the other one.

3.1.1. Evaluation of exploitation and exploration capabilities
These test cases (-) in Table 2 are unimodal functions, which

contain only one global optimal solution. The investigated meta-heuris-
tic algorithms do not worry about the risk of falling into local optimum
in these test functions but only focus on their exploitation capability per-
formance. From the ”ARV” index in Table 6, we can see that EESHHO
has achieved the first comprehensive ranking, which is very competitive
compared with other comparative algorithms.

In particular, from the comparison results of EESHHO and HHO, they
have obtained the same results on the test functions, and
are optimal. Although HHO shows better results than EESHHO on the

test function; EESHHO’s results are not bad either. Also, EESHHO
has better performance than HHO on the and test functions. The
results demonstrated that our algorithm not only retains the original
HHO exploitation performance but also further improves it. This is be-
cause the core strategy of HHO is retained in the process of developing
EESHHO (see Algorithm 2), so its exploitation ability is not weakened.
Meanwhile, the Elite Evolution Strategy (EES) retains the most excellent
genes and provides Gaussian local mutation (see Section 2.1.1), which
significantly enhances the local exploitation ability of EESHHO.

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

10 C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529

Table 5
Summary of composition functions - .

ID(CEC2017-ID) Properties Dim Range Optimum

(C22) MM,NS,A,DO 30 [−100,100] 2200
(C23) MM,NS,A,DO 30 [−100,100] 2300
(C25) MM,NS,A,DO 30 [−100,100] 2500
(C28) MM,NS,A,DO 30 [−100,100] 2800
(C29) MM,NS,A,DO,DS 30 [−100,100] 2900
(C30) MM,NS,A,DO,DS 30 [−100,100] 3000

* MM:Multi-modal, NS:Non-separable, NS:Non-separable, A:Asymmetrical.
* DO:Different properties around different local optima.
* DS:Different properties for different variables sub components.

Table 3 shows the multimodal functions, and Table 4 shows the
fixed-dimension multimodal functions. They are different from uni-
modal functions in that they contain a large number of locally opti-
mal solutions and only one global optimal solution. Hence, these test
cases (-) can be used to test the algorithm’s exploration abil-
ity. It should be pointed out that the fixed-dimension multimodal func-
tions are different from multimodal functions because their dimension
variable (see ”Dim” index in the Table 4) cannot be changed, but
they provide different search space and function mathematical proper-
ties from multimodal function. Table 7 reports the experimental re-
sults of the comparison algorithm on multimode functions (-).
It can be seen from the comprehensive index ”ARV” that EESHHO has
achieved the first achievement, followed by ALCPSO, SMA, DHHO/M,
HHODE, HHO, WOA, GWO, FSTPSO, mWSA, SCA. Moreover, it can be
seen from the ”+/=/-” indicators that EESHHO outperforms HHO, SCA,
SMA, mWSA, WOA, GWO, FSTPSO, DHHO/M, and HHODE in at least
11 test functions out of 16 test functions. Although EESHHO outper-
formed ALCPSO only in 8 test functions, it did not appear inferior to
ALCPSO. These results demonstrate that the EESHHO has a good ex-
ploration ability, not only better than the original HHO but also better

than other comparison algorithms. This is mainly due to the addition
of elite random mutation mechanism in EES (see Section 2.1.2), which
provides more opportunities for EESHHO to explore, leading this algo-
rithm towards global optimality.

3.1.2. Balanced performance evaluation between exploration and
exploitation

Table 5 shows 6 composite functions. Like multimode functions,
they have a large number of local optimal values and only one global
optimal value. However, optimizing a composite function is a more chal-
lenging task than a multimode function. It requires the algorithm’s ex-
ploration and exploitation ability to be strong enough and requires a
proper balance between exploration and exploitation to allow local op-
timization to be avoided.

The optimization results of all comparison algorithms on these com-
posite test functions (-) are reported in Table 8. From ”+/=/-”
index, it can be clearly seen that the optimization results obtained by
EESHHO on all 6 composite test functions are better than HHO, SCA,
mWSA, WOA, FSTPSO, DHHO/M, HHODE. Although GWO has achieved
better results than EESHHO on the and test functions, EESHHO
is still better than GWO in terms of comprehensive indicators. Also,
EESHHO is better than or equal to ALCPSO in all test cases except the

test function. These experimental results prove that EESHHO can
well balance the exploration and exploitation stages, which is much
stronger than HHO’s performance in this regard. Such ability derives
from the adaptive strategy for controlling the proportion of EES’s out-
standing genes (see Section 2.1.3).

3.1.3. Evaluation of convergence performance
Fig. 8 shows the convergence curve of EESHHO and other compari-

son algorithms in some of the test functions, where ”Average Best-so-far”
represents the average of the optimal values obtained in each evalua-
tion evolution of 30 runs so far, and ”FES” indicates the number of fit-
ness evaluation (the maximum fitness evaluation is). It can be

Table 6
Comparison of optimization results obtained for the unimodal benchmark functions(-).

Algorithms

AVG STD AVG STD AVG STD AVG STD

EESHHO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
HHO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
SCA 1.5092E-54 8.1565E-54 1.2432E-57 6.1761E-57 8.9022E-01 2.0635E+00 3.2585E-03 9.4607E-03
SMA 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
mWSA 7.6719E-133 4.0244E-132 5.5254E-67 1.0743E-66 7.9881E-132 2.6165E-131 7.8409E-68 1.4439E-67
WOA 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.4127E+01 7.3936E+01 3.9687E+00 1.0534E+01
GWO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.9589E-180 0.0000E+00 1.3786E-152 3.9903E-152
ALCPSO 9.5653E-50 5.2391E-49 2.9696E-05 1.5774E-04 3.0887E-11 7.5484E-11 3.8977E-05 5.3755E-05
FSTPSO 4.4751E+03 1.2849E+03 2.2936E+01 1.1108E+01 9.4325E+03 5.0963E+03 2.6900E+01 4.2929E+00
DHHO/M 0.0000E+00 0.0000E+00 1.2077E-257 0.0000E+00 0.0000E+00 0.0000E+00 1.2674E-233 0.0000E+00
HHODE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CP
AVG STD AVG STD AVG STD +/=/- ARV

EESHHO 2.6822E-04 6.9776E-04 5.1639E-19 6.6998E-19 1.2192E-05 1.4710E-05 N/A 1
HHO 8.7569E-05 8.8091E-05 1.2975E-06 2.0710E-06 2.3470E-05 2.6968E-05 2/4/1 3
SCA 2.7373E+01 7.1361E-01 3.5530E+00 2.8591E-01 1.3912E-03 1.1244E-03 7/0/0 9
SMA 1.8703E-03 1.4628E-03 9.5592E-06 3.1015E-06 1.1143E-05 1.1525E-05 2/4/1 3
mWSA 2.8956E+01 1.9055E-02 6.4653E+00 4.8906E-01 3.1071E-06 4.2301E-06 6/0/1 7
WOA 2.4260E+01 2.6308E-01 5.6667E-06 1.8474E-06 1.5271E-04 1.8244E-04 5/2/0 6
GWO 2.6388E+01 6.8458E-01 4.3542E-01 3.3413E-01 6.0386E-05 4.4058E-05 5/2/0 5
ALCPSO 4.5893E+01 3.2837E+01 2.6758E-31 5.1946E-31 9.3594E-02 3.6838E-02 6/0/1 8
FSTPSO 9.9541E+05 5.8474E+05 3.6523E+03 1.1366E+03 2.9703E-01 1.6947E-01 7/0/0 10
DHHO/M 2.8167E-05 4.8775E-05 7.5434E-07 9.4845E-07 2.2963E-05 2.3856E-05 4/2/1 4
HHODE 8.2239E-05 1.2719E-04 8.7012E-07 1.6085E-06 1.2446E-05 1.5174E-05 2/4/1 2

Source codes available at: https://aliasgharheidari.com

UNCORRECTED PROOF
Table 7
Comparison of optimization results obtained for the multimodal(-), and fixed-dimension multimodal benchmark functions(-).

Algorithms

AVG STD AVG STD AVG STD AVG STD

EESHHO −1.2569E+04 1.9877E-11 0.0000E+00 0.0000E+00 8.8818E-16 0.0000E+00 0.0000E+00 0.0000E+00
HHO −1.2569E+04 1.1229E-02 0.0000E+00 0.0000E+00 8.8818E-16 0.0000E+00 0.0000E+00 0.0000E+00
SCA −4.4281E+03 2.4368E+02 4.1213E+00 1.3415E+01 1.1248E+01 9.0603E+00 1.4026E-15 7.6823E-15
SMA −1.2569E+04 3.2611E-04 0.0000E+00 0.0000E+00 8.8818E-16 0.0000E+00 0.0000E+00 0.0000E+00
mWSA −3.1796E+03 6.0164E+02 0.0000E+00 0.0000E+00 8.8818E-16 0.0000E+00 0.0000E+00 0.0000E+00
WOA −1.2470E+04 3.0222E+02 0.0000E+00 0.0000E+00 2.7830E-15 1.8027E-15 2.1984E-03 1.2041E-02
GWO −6.3168E+03 7.6188E+02 0.0000E+00 0.0000E+00 7.6383E-15 1.0840E-15 0.0000E+00 0.0000E+00
ALCPSO −1.1533E+04 3.4459E+02 2.1889E+01 7.3174E+00 1.3944E+00 7.4939E-01 1.4968E-02 2.0150E-02
FSTPSO −5.1212E+03 6.7136E+02 1.6505E+02 2.9367E+01 1.2538E+01 1.1231E+00 3.7419E+01 1.3005E+01
DHHO/M −1.2569E+04 1.5606E-03 0.0000E+00 0.0000E+00 8.8818E-16 0.0000E+00 0.0000E+00 0.0000E+00
HHODE −1.2569E+04 1.1471E-02 0.0000E+00 0.0000E+00 8.8818E-16 0.0000E+00 0.0000E+00 0.0000E+00

AVG STD AVG STD AVG STD AVG STD
EESHHO 1.6843E-20 2.9413E-20 4.3351E-19 7.2061E-19 9.9800E-01 2.2584E-16 3.0749E-04 1.6949E-14
HHO 5.4964E-08 7.6732E-08 5.5296E-07 6.5750E-07 9.9800E-01 2.1208E-11 3.1145E-04 4.3398E-06
SCA 3.2797E-01 8.5057E-02 1.9925E+00 1.3249E-01 9.9800E-01 8.4157E-07 5.6506E-04 4.0557E-04
SMA 9.4534E-06 1.0297E-05 5.5624E-06 3.8945E-06 9.9800E-01 5.3044E-16 3.1826E-04 5.5152E-05
mWSA 9.2760E-01 1.6722E-01 2.9888E+00 3.5455E-02 3.2373E+00 2.6432E+00 1.9582E-03 1.4055E-03
WOA 1.1851E-04 6.4354E-04 3.8903E-04 2.0062E-03 1.1964E+00 6.0541E-01 3.8352E-04 2.3192E-04
GWO 3.4374E-02 1.8528E-02 4.1542E-01 1.9799E-01 5.5553E+00 4.9363E+00 3.6501E-03 7.6022E-03
ALCPSO 3.7020E-02 6.8999E-02 6.0051E-03 7.5697E-03 9.9800E-01 1.1662E-16 3.9909E-04 2.7951E-04
FSTPSO 4.2431E+04 8.6941E+04 9.7259E+05 8.1306E+05 5.9357E+00 3.6198E+00 6.6875E-03 1.2276E-02
DHHO/M 1.6448E-08 2.1878E-08 2.0629E-07 2.1369E-07 9.9800E-01 1.2384E-12 3.1057E-04 3.9860E-06
HHODE 6.9854E-08 9.6700E-08 8.9989E-07 1.7802E-06 9.9800E-01 1.3064E-11 3.1043E-04 3.5949E-06

AVG STD AVG STD AVG STD AVG STD
EESHHO −1.0316E+00 5.3761E-16 3.9789E-01 0.0000E+00 3.0000E+00 1.8217E-15 −3.8628E+00 2.3744E-15
HHO −1.0316E+00 2.2504E-14 3.9789E-01 5.8942E-10 3.0000E+00 1.7621E-11 −3.8627E+00 9.6938E-05
SCA −1.0316E+00 2.5854E-06 3.9796E-01 5.4215E-05 3.0000E+00 2.4497E-07 −3.8556E+00 2.3401E-03
SMA −1.0316E+00 1.5288E-14 3.9789E-01 8.5497E-13 3.0000E+00 1.1275E-14 −3.8628E+00 7.0951E-11
mWSA −1.0218E+00 1.4005E-02 4.2301E-01 8.4634E-02 3.2218E+00 9.2450E-01 −3.7637E+00 1.1019E-01
WOA −1.0316E+00 5.3542E-15 3.9789E-01 2.1053E-10 3.0000E+00 2.4841E-08 −3.8620E+00 2.4023E-03
GWO −1.0316E+00 2.7309E-11 3.9789E-01 9.3782E-10 3.0000E+00 1.2745E-07 −3.8625E+00 1.4528E-03
ALCPSO −1.0316E+00 5.9752E-16 3.9789E-01 0.0000E+00 3.0000E+00 2.1630E-15 −3.8628E+00 2.6117E-15
FSTPSO −1.0316E+00 6.7752E-16 3.9789E-01 0.0000E+00 3.0000E+00 1.3374E-15 −3.8628E+00 2.7101E-15
DHHO/M −1.0316E+00 6.9853E-16 3.9789E-01 2.0299E-11 3.0000E+00 8.3833E-14 −3.8628E+00 6.0133E-06
HHODE −1.0316E+00 1.6483E-15 3.9789E-01 2.0292E-11 3.0000E+00 3.5140E-12 −3.8628E+00 5.1712E-06

AVG STD AVG STD AVG STD AVG STD
EESHHO −3.2824E+00 5.7005E-02 −1.0153E+01 5.4001E-15 −1.0403E+01 8.7273E−16 −1.0536E+01 2.4240E−15
HHO −3.2304E+00 6.6832E−02 −5.3940E+00 1.2895E+00 −5.2648E+00 9.7041E−01 −5.4889E+00 1.3718E+00
SCA −2.9275E+00 2.5921E−01 −3.2554E+00 2.8916E+00 −4.9723E+00 2.2361E+00 −4.8124E+00 2.7023E+00
SMA −3.2229E+00 4.5066E−02 −1.0153E+01 1.1359E−06 −1.0403E+01 1.4123E−06 −1.0536E+01 1.3696E−06
mWSA −2.4044E+00 3.9204E−01 −4.3150E+00 1.1682E+00 −3.9567E+00 5.8156E−01 −3.9361E+00 7.2667E−01
WOA −3.2638E+00 7.6506E−02 −1.0153E+01 1.3456E−06 −1.0403E+01 5.7089E−07 −1.0536E+01 1.2703E−06

Source codes available at: https://aliasgharheidari.com

UNCORRECTED PROOF
Algorithms

AVG STD AVG STD AVG STD AVG STD

GWO −3.2610E+00 6.8092E−02 −9.6449E+00 1.5509E+00 −1.0403E+01 8.7629E−07 −1.0358E+01 9.7874E−01
ALCPSO −3.2625E+00 6.0463E−02 −9.1208E+00 2.0513E+00 −9.3298E+00 2.1419E+00 −9.6414E+00 2.0356E+00
FSTPSO −3.2938E+00 5.1862E−02 −5.1435E+00 3.2123E+00 −5.7639E+00 3.4470E+00 −4.7915E+00 3.3333E+00
DHHO/M −3.2621E+00 6.9364E−02 −1.0153E+01 1.1686E−04 −1.0403E+01 1.7177E−04 −1.0536E+01 2.2841E−04
HHODE −3.2224E+00 8.1070E−02 −1.0152E+01 9.6067E−04 −1.0402E+01 1.4491E−03 −1.0535E+01 1.2308E−03
CP EESHHO HHO SCA SMA mWSA WOA GWO ALCPSO FSTPSO DHHO/M HHODE
+/=/- N/A 13/3/0 14/2/0 13/3/0 13/3/0 14/2/0 14/2/0 8/8/0 11/5/0 12/4/0 13/3/0
ARV 1 6 11 3 10 7 8 2 9 4 5

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 13

Table 8
Comparison of optimization results obtained for the composite benchmark functions (-).

Algorithms

AVG STD AVG STD AVG STD AVG STD

EESHHO 4516.079175 2165.49847 2838.705634 45.51988901 2895.122052 11.42102482 3195.162893 43.06245093
HHO 6542.02607 1527.540171 3177.761774 125.4992381 2909.68814 16.93351827 3267.689571 36.70142322
SCA 8100.954706 2509.770232 2985.004547 22.7433969 3219.793884 58.08508899 3850.586836 182.5784693
SMA 5681.613474 850.3205581 2741.043834 26.8713464 2887.248306 2.365572384 3222.768223 50.55585564
mWSA 9846.343147 560.9177017 3852.673848 191.0922944 5963.026046 652.1478017 8047.23587 783.9281287
WOA 6860.749094 2235.076952 3052.880703 99.66516147 2945.509013 29.89842298 3297.415443 28.11785503
GWO 5080.418142 1232.642694 2745.08302 27.54470558 2986.731553 60.08833189 3422.718283 109.5304787
ALCPSO 5353.483612 1562.458697 2795.896223 51.11463433 2902.006762 20.66201859 3238.409277 28.45413434
FSTPSO 7638.661452 1467.646203 3318.791849 176.1770835 3898.324787 310.0506547 4777.0864 453.2765507
DHHOM 6503.74572 2016.337093 3086.263999 92.42761074 2912.85731 17.46978447 3259.06818 39.37503833
HHODE 5982.145363 2163.102578 3116.070845 123.9470167 2905.371407 16.57750524 3253.588993 21.43974962

CP
AVG STD AVG STD +/=/- ARV

EESHHO 3916.568663 262.7993431 12462.8787 9355.759021 N/A 1
HHO 4411.160613 273.1791471 1765583.539 1015822.794 6//0//0 7
SCA 4644.560624 216.0572195 73186436.47 20429799.84 6//0//0 9
SMA 3812.790301 163.3519005 16681.97012 4707.529439 3//1//2 2
mWSA 11421.93258 7371.837512 2808946039 1375991287 6//0//0 11
WOA 4837.291147 484.1190401 10203286.38 5568561.77 6//0//0 8
GWO 3728.697389 149.0688107 6098613.54 6952598.975 3//1//2 4
ALCPSO 3930.728102 212.0652639 16277.40501 6157.888819 2//3//1 3
FSTPSO 5290.637653 402.7803798 29393339.53 34187269.57 6//0//0 10
DHHOM 4327.235406 344.9879671 1605689.543 714353.3557 6//0//0 6
HHODE 4296.751484 352.5739514 1531646.441 830060.8559 6//0//0 5

seen from the figure that EESHHO has strong competitiveness compared
with other comparison algorithms.

As shown in Fig. 8, EESHHO shows three different convergence
curve states when optimizing these test functions. First, EESHHO can
quickly converge to the optimal solution, which is shown in ,
and test functions. This is because the EES EESHHO algorithm can
make full use of the information of many excellent solutions. Once the
algorithm finds the region’s evolutionary direction containing the op-
timal solution, it can quickly locate its location. Secondly, compared
with other algorithms, EESHHO can achieve higher convergence accu-
racy in fewer evolution times, which is shown in ,
and test functions (including multimode functions and composite
functions). This may be that EESHHO has reached a proper balance in
the exploration and exploitation strategies in the process of optimizing
these functions; after the exploration strategy is quickly located in the
most promising area, the exploitation strategy is adopted to conduct a
local search for the area promptly. This is due to the algorithm’s full
adaptive adjustment strategy. Thirdly, EESHHO gradually converges to
the optimal solution at the later stage of evaluation, which is shown in

, and test functions. This may be because EESHHO did
not find a suitable solution at the beginning of the evaluation and fell
into the local optimum, but EESHHO is still evolving and converging to-
wards the global optimum in the final stage algorithm convergence. This
is due to the gene random mutation mechanism in EESHHO, which al-
lows the algorithm to jump out of the local optimum at the later evolu-
tion stage.

In conclusion, the comprehensive performance of EESHHO is the
best among all the comparison algorithms. First of all, EESHHO has
a high exploration ability because it integrates the exploration perfor-
mance of original HHO (see Section 2.2.2) and elite random mutation
mechanism in EES (see Section 2.1.2). It is worth noting that EESHHO
mainly adopts EES in the middle and later stages of evolution, which
provides the opportunity to jump out of local optimum for the later
evolution of the algorithm. Secondly, EESHHO shows strong exploita

tion ability because it further adopts the elite evolution mechanism of
EES (see Section 2.1.1) in the exploitation strategy of the original HHO.
Meanwhile, EESHHO keeps the adaptive adjustment strategy of the orig-
inal HHO to maintain a proper balance between exploration and ex-
ploitation. The experimental results prove that EESHHO shows high con-
vergence speed and local optima avoidance. In the next section, ver-
ify the performance of EESHHO in more challenging real-world prob-
lems (resource-constrained project scheduling and QoS-aware web ser-
vice composition).

3.2. EESHHO for resource-constrained project scheduling problem

Resource constrained project scheduling problem (RCPSP) is a classi-
cal combinatorial optimization problem and an NP-hard problem (Kim
& Ellis, 2010; Huang & Yang, 2019). The RCPSP is often consid-
ered one of the benchmarks for testing discrete search optimization al-
gorithms (Baykasoğlu & Şenol, 2019). In the RCPSP, a project con-
taining N activities can be represented as V= , where 1 and
N denote the two virtual activities of project start and end, respec-
tively. Meanwhile, all activities cannot be interrupted after they have
started to be executed. K renewable resources are required for the im-
plementation of the project, and the amount of each resource available
in each time interval is denoted as = . Also, each activ-
ity has a duration that it needs to run for, during which time the ac-
tivity cannot be terminated. For example, the duration of activity is
expressed as , and the demand for the k-th resource is . Virtual
activities 1 and N both have durations and resource requirements of
0. In addition to having resource quantity constraints, there are also
precedence constraints between activities. For each activity, , there
is a set of preceding and succeeding activities and . Activity
must not begin execution until all of its predecessor activities =

are completed. Fig. 9.(a) shows the precedence constraint
relationship for a project containing 7 activities. The number above
each activity represents the duration, the number below indicates the

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

14 C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529

Fig. 8. Convergence curves of all compared algorithms in some of test functions.

Fig. 9. An example of an RCPSP containing 7 activities.

number of resources required, and there is a precedence constraint re-
lationship between the two activities connected by a directional arrow.
For example, activity must begin after activity ends, and similarly,
activity must begin after activity ends. If the project has only one
resource, , the total amount of its resources is 3. Fig. 9.(b) shows
the feasible scheduling table for this project, where the horizontal axis

shows the duration of the project, and the vertical axis is the resources
consumed. It can be seen that the project duration is 4 while meeting
the resource and preference constraints.

The scheduling table T= defines the start time of a
set of all activities, and the ultimate goal of solving RCPSP is to mini-
mize the duration of the project while satisfying the resource and activ

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 15

ity precedence constraints. The mathematical model is as follows:

(11)

where = denotes the activity being
performed at moment t. denotes the completion time of the last
virtual activity, which is also the objective function to be minimized.

denotes the activity precedence constraint.
denotes the resource constraint.

denotes that the start time of all activities cannot
be negative.

In solving RCPSP using the EESHHO algorithm, we encode the so-
lution using ”priority list, PL” (Baykasoğlu & Şenol, 2019) and de-
code it using ”serial scheduling generation scheme, SSGS” (Baykasoğlu
& Şenol, 2019). Fig. 10 shows this encoding and decoding process.
First, we use the EESHHO algorithm to generate a vector whose
upper and lower bounds are 1 and 0, respectively. Each dimension of
the vector uniquely corresponds to an activity, and each dimen-
sion’s value is the priority number of that activity. Subsequently,
is sorted from smallest to largest, and the order of each activity in the
sorting process also changes with the priority value of the correspond-
ing dimension. Finally, the precedence constraints are also taken into ac-
count when generating the result, and if the constraints are not satisfied,
a substitution operation (Kadam & Mane, 2015) is performed until all
precedence constraints are satisfied. SSGS can generate a table of feasi-
ble schedules. It schedules each activity in order of sequence act within
the precedence and resource constraints. And, The feasible scheduling
table of in Fig. 10 has been described in Fig. 9.

3.2.1. Experimental results of RCPSP
This section tests the performance of EESHHO using the J30, I60,

and J120 datasets mentioned in the literature (Baykasoğlu & Şenol,
2019), where J30, J60, and J120 contain 30, 60, and 120 activities,
respectively. Also, the two datasets J30 and J60, contain 48 sets of
data, each containing 10 test cases. Moreover, J120 contains 60 sets
of data, each containing 10 test cases. In this experiment, we measure
the performance of our algorithm using the evaluation index of aver-
age deviation (AvgDev), which is also used in many pieces of literature

Fig. 10. An example RCPSP with solution encoding and decoding.

(Baykasoğlu & Şenol, 2019; Kadam & Mane, 2015; Kim & Ellis,
2010). The average deviation of J30 is calculated differently from that
of J60 and J120. Since the optimal solution for each test case of the
J30 data is already known, the average deviation from the optimal so-
lution is used, which is mathematically described in Eq. (12). The op-
timal solution for each test case of the J60 and J120 data is unknown,
but the lower bound for each test case has been obtained using the crit-
ical path method(CPM) (Baykasoğlu & Şenol, 2019), so the average
deviation from this lower bound is used, and mathematically described
in Eq. (13).

(12)

(13)

In this section, 18 mainstream algorithms that have been used for
applications to the RCPSP are used as comparison algorithms whose test
results about the RCPSP are derived from their original literature. Also,
to reduce our algorithms’ bias in optimizing RCPSP due to uncertainties,
we run each test case independently 10 times and take the average of
the 10 times as the final optimization result. The algorithm’s termina-
tion condition was set to 1000 fitness function (See Eq. (11).) evalua-
tions and 5000 fitness function evaluations.

The results of this average deviation for J30, J60, and J120 are de-
scribed in Table 9, and these results are in the form of percentages.
Meanwhile, The best results for each scenario are indicated in bold. The
results obtained by EESHHO on the J30 dataset are not very competi-
tive compared to other comparison algorithms, with average deviations
of and for the 1000 and 5000 evaluation scenarios, respec-
tively. The number of test cases in which EESHHO reached optimum in
480 test cases under 1000 evaluation scenarios was 320, and the number
of test cases that reached optimum under 5000 evaluation scenarios was
358. From the results, EESHHO still has room for further optimization
in solving certain test cases in the J30 dataset. As the number of eval-
uations increases, EESHHO can hopefully successfully resolve more test
cases in the J30 dataset. For the J60 dataset, EESHHO took the best test
results among all comparison algorithms for the 1000 evaluation scenar-
ios, achieving an average deviation of . Although not the best per-
formance in the 5000 evaluation scenario, it only lagged behind the op-
position based cWSA algorithm by . EESHHO achieved an average
deviation of on the J60 dataset in the 5000 evaluation scenario. For
the J120 dataset, EESHHO still takes the best test results among all com-
parison algorithms, reaching an average deviation of and
for the 1000 and 5000 evaluation scenarios, respectively. Because the
optimal value for each test case in the J120 dataset is unknown, and the
lowest lower bound based on CPM is known. So EESHHO has 66 test
cases out of 600 test cases that reach the lowest lower bound in the 1000
evaluation scenarios and 90 test cases that reach the lowest lower bound
in the 5000 evaluation scenarios. In summary, EESHHO’s comprehen-
sive test results are highly competitive compared to the above compari-
son algorithm and can be used as a viable algorithm to solve such opti-
mization problems. To further test the effectiveness of the EESHHO, in
the next section, we apply EESHHO to the QoS-aware web service com-
position optimization problem, which is a practical engineering problem
that has been gaining attention in recent years with the rapid develop-
ment of web services.

3.3. EESHHO for QoS-aware web service composition

In cloud manufacturing and the internet of things, we may face a
challenging service composition problem that can be utilized in a wide
variety of applications (Lv & Xiu, 2020; Lv & Song, 2019; Lv &
Kumar, 2020). QoS-aware web service composition problem is usually

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

16 C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529

Table 9
the average deviation results of EESHHO and other comparison algorithms for J30, J60
and J120.

Algorithms J30 J60 J120

1000 5000 1000 5000 1000 5000

EESHHO
(Present work)

1.5 0.89 3.8 3.1 13.07 11.50

Opposition
based cWSA
(Baykasoğlu &
Şenol, 2019)

0.59 0.16 4.28 2.93 15.48 14.72

cWSA
(Baykasoğlu &
Şenol, 2019)

0.66 0.28 4.58 3.12 16.11 15.32

COAs (Elsayed
et al., 2017)

0.04 0 11.13 10.77 34.04 32.9

MAOA (Zheng
& Wang,
2015)

0.17 0.06 11.67 10.84 33.87 32.64

GA-MBX
(Zamani,
2013)

0.14 0.04 11.33 10.94 34.02 32.89

GANS (Proon &
Jin, 2011)

1.83 1.27 11.35 10.53 33.35 31.51

ACO + SS
(Chen et al.,
2010)

0.14 0.06 11.75 10.98 35.19 32.48

SFLA (Fang &
Wang, 2012)

0.36 0.21 11.44 10.87 34.83 33.2

PSO–HH
(Koulinas et
al., 2014)

0.26 0.04 11.74 11.13 35.2 32.59

GA (Mendes et
al., 2009)

0.06 0.02 11.72 11.04 35.87 33.03

GANN
(Agarwal et
al., 2011)

0.13 0.1 11.51 11.29 34.65 34.15

HEDA (Wang &
Fang, 2012)

0.38 0.14 11.97 11.43 35.44 33.61

PSO (Chen,
2011)

0.29 0.14 12.03 11.43 35.71 33.88

JPSO (Chen,
2011)

0.29 0.14 12.03 11.43 35.71 35.88

BA(Ziarati et
al., 2011)

0.42 0.19 12.55 12.04 37.72 36.76

GA-activitylist
(Hartmann,
1998)

0.54 0.25 12.68 11.89 39.37 36.74

TS (Klein,
2000)

0.46 0.16 12.97 12.18 40.86 37.88

GLSA (Kadam
& Mane,
2015)

0.03 N/A 4.02 N/A 15.6 N/A

formulated as a combinatorial optimization problem, which is an
NP-hard problem (Li, Li, & Chen, 2020). Suppose N is the number
of abstract services (service composition tasks) in the process of service
composition, and S= is defined as composite services.
Meanwhile, suppose M is the number of concrete services (candidate ser-
vices) for each abstract service, and is the con-
crete services for . D is the number of QoS (Quality of Service) attrib-
utes (Li et al., 2014). The mathematical model of this combinatorial
optimization problem is expressed as follows:

(14)

where is the weight of the k-th QoS attribute. represents the ag-
gregation function (Li et al., 2014), and is used to calculate the
combined value of attribute k. is a concrete service selection oper-
ation (each abstract service allows only one concrete service to be se-
lected), which indicates whether concrete service j is selected for ab-
stract service i. indicates the lower bound of the k-th QoS attribute,
and the upper bound can be transformed into the lower bound (Wang,
Xu, Sheng, Wang, & Yao, 2019). When the problem is optimized, it
must not only satisfy this global QoS attribute constraint but also reach
the maximum value of Eq. (14).

It is important to note that the aggregate function varies with
the composition workflow’s structural patterns, which have four basic
types of structural patterns, including sequence combination pattern,
loop pattern, parallel pattern, and conditional pattern (Jaeger, Ro-
jec-Goldmann, & Muhl, 2004). For example, for the QoS attribute of
response time, the aggregate function is the sum of the response time of
all components in the sequential combination pattern while takes the
maximum in the parallel pattern. Sine previous researchers have con-
ducted in-depth research on this subject, and this loop pattern, parallel
pattern, and conditional pattern can be reduced or converted to sequen-
tial modes using techniques that handle multiple execution paths (Car-
doso, Sheth, Miller, Arnold, & Kochut, 2004), so in our work, we
only consider the sequential pattern.

The EESHHO application to the QoS-aware web service composition
optimization problem uses an integer coding approach, which is the ap-
proach adopted by most of the literature (Gavvala, Jatoth, Gangadha-
ran, & Buyya, 2019; Chandra & Niyogi, 2019; Huang, Li, & Tao,
2014). Fig. 11 shows the process of composing services under the in-
teger coding approach. Enter a composite service S=
, which is the sequential combination pattern. Each task corresponds to
an abstract service, e.g., corresponds to the abstract service . Each
abstract service contains m number of concrete services, e.g., con-
tains many concrete services that have the same function but different
QoS. Subsequently, one concrete service is selected from many concrete
services corresponding to one abstract service, and similarly, one con-
crete service is selected for each abstract service. Finally, these concrete
services are combined to reach the optimal value in Eq. (14). Each ab-
stract service corresponds to all concrete services with their own unique
number in this combination of integer-coded services. EESHHO solves
this problem by performing an integer operation on the final solution,
thus enabling the service combination operation. For example, a solu-
tion S= , where represents the first abstract service
corresponding to the concrete service numbered 3, is the second ab-
stract service corresponding to the concrete service numbered 5, and so
on.

3.3.1. Experimental setup and metrics
In this section, EESHHO was compared with several mainstream al-

gorithms, which have been used to solve the problem of QoS-aware web
service composition. Meanwhile, the original HHO was also tested si-
multaneously, even though it has not been used to solve the problem
so far. All the compared algorithms, including EESHHO, Eagle Strategy
with Whale Optimization Algorithm (ESWOA) (Gavvala et al., 2019),
modified Artificial Bee Colony(mABC) (Chandra & Niyogi, 2019),
Chaos Control Optimal Algorithm(CCOA) (Huang et al., 2014), and
HHO runs in the same experimental environment. The parameter set

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 17

Fig. 11. A brief process of Qos-aware web service composition.

tings of EESHHO and HHO have been described (see Section 3.1).
ESWOA, CCOA, and mABC are described below:

• ESWOA is an evolved version of WOA proposed in 2018 and has been
proven to have a good performance in solving QoS-aware web service
composition problem. ESWOA has a fixed parameter to balance the
transition between the exploration and exploitation stages, and is set
to =0.2 according to the original literature requirements (Gavvala
et al., 2019).

• mABC introduces the opposite learning method and differential evo-
lution strategy based on chaos into the ABC algorithm to solve the
QoS-aware web service composition problem. It has an important pa-
rameter limit to control the execution frequency of the exploration
bee, which is set to (where m is the population size and
n is the dimension size).

• CCOA is a meta-heuristic algorithm specifically designed for com-
binatorial optimization problems. It uses chaos to control the en-
tire algorithm’s search process, thereby improving the search effi-
ciency in large-scale spaces. It is more effective than GA, PSO, and
other meta-heuristic algorithms on combinatorial optimization prob-
lems (Huang et al., 2014). The setting parameter A is set to 3.

All comparison algorithms’ population size was set to 60, and the
maximum fitness evaluation was set to 15000. We adopted the QWS2.0
dataset (Al-Masri & Mahmoud, 2007), which contains 2507
real-world services with their 9 QoS attribute information. In this study,
we only discuss 3 QoS attributes of each service: response time, reliability,

and latency. The global constraints of all test cases are generated dynam-
ically in the following ways: we first calculate the average QoS value
of each attribute based on all concrete services in each abstract service,
then obtain their aggregate values through the existing QoS attribute ag-
gregation functions. Finally, each QoS attribute’s global constraint is de-
fined by taking 0.9 times of its aggregate value.

We define these test cases through M and N, where M represents the
number of abstract services, and N represents the number of concrete
services per abstract service. For example, #(N=30, M=50), #(N=30,
M=350) and #(N=60, M=350) are different test cases. We evaluate
the algorithms’ performance in solving QoS-aware web service compo-
sition problem using csQos and CTmetrics. csQos is the value of the ob-
jective test function calculated by Eq. (14), which falls within the range
of (0,1) after standardization. CT represents the computation time of the
algorithm to get the final solution. All the experimental results are the
average of the results after each algorithm runs 30 times to ensure reli-
able evaluation.

3.3.2. Evaluate comparison algorithms
Table 10 shows the performance of the different algorithms in all

test cases (varying N and M). The challenge of this optimization task
increases with the increase of N, which is the reason why the opti-
mization value is generally low when N=90. It is worth noting that
EESHHO still achieves the best results in this complicated test case.
Moreover, EESHHO achieved the best performance of all comparison al-
gorithms in all test cases (only for csQos metric). This may be because
the excellent genes of elite individuals preserved in EESHHO provide a

Source codes available at: https://aliasgharheidari.com

UNCORRECTED PROOF
Table 10
Results of the comparison algorithms are in different test cases(QoS-aware web service composition)

Metric Algorithm

M = 50 M = 350 M = 650 M = 950 M = 50 M = 350 M = 650 M = 950 M = 50 M = 350 M = 650 M = 950

csQos EESHHO 0.712 0.820 0.821 0.814 0.686 0.691 0.692 0.692 0.682 0.690 0.690 0.691
ESWOA 0.699 0.755 0.744 0.738 0.682 0.689 0.688 0.689 0.677 0.687 0.686 0.687
mABC 0.673 0.693 0.699 0.695 0.667 0.682 0.684 0.684 0.663 0.681 0.682 0.682
CCOA 0.686 0.714 0.718 0.720 0.678 0.685 0.686 0.687 0.675 0.682 0.683 0.684
HHO 0.679 0.702 0.700 0.698 0.670 0.684 0.684 0.685 0.665 0.681 0.682 0.683

CT(s) EESHHO 0.304 0.313 0.324 0.319 0.323 0.332 0.339 0.335 0.343 0.351 0.359 0.359
ESWOA 0.295 0.308 0.303 0.308 0.347 0.347 0.348 0.355 0.367 0.383 0.386 0.389
mABC 0.300 0.315 0.310 0.313 0.367 0.364 0.374 0.381 0.398 0.414 0.412 0.417
CCOA 0.435 0.413 0.417 0.421 0.513 0.423 0.440 0.446 0.505 0.432 0.436 0.439
HHO 0.436 0.459 0.465 0.452 0.481 0.501 0.497 0.501 0.514 0.542 0.538 0.532

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 19

potential incentive for optimizing this problem to promote the algorithm
to find a better solution.

EESHHO mostly obtains the shortest computation time. Meanwhile,
the computation time of EESHHO is more affected by N, but not sensi-
tive to M, and the above comparison of meta-heuristic algorithms shows
a similar phenomenon, which is that compared with M, the influence
of N will be more significant. The reason for this phenomenon is that
M determines the search space for this problem. Simultaneously, the
meta-heuristic method relies on the global exploration strategy and lo-
cal exploitation strategy to optimize in the search space. As long as the
maximum fitness evaluation is fixed, no matter how the search space
changes, the calculation time will not be significantly affected. There-
fore, these algorithms’ computing time is more affected by the algo-
rithm’s complexity, the number of N, and the algorithm code’s optimiza-
tion. Our algorithm’s computing time is very competitive in most test
cases under a similar coding environment and the same number of N.
This result can be explained by the simple structure of our algorithm and
its low computational complexity.

As a summary, the result of optimizing this QoS-aware web service
composition problem shows that the proposed EESHHO algorithm has
the potential competitiveness in solving this kind of real-world combi-
natorial optimization problem.

4. Conclusion and future work

In this study, we proposed a novel meme algorithm, named EESHHO,
based on the defects (for some optimization cases) of the meta-heuris-
tic algorithms HHO as an entry point and comprehensively improving
the performance of the original HHO. We were first inspired by the
meta-heuristic algorithm based on evolution and proposed a novel Elite
Evolutionary Strategy (EES) to deal with the shortcomings of the orig-
inal HHO, which is slow to converge and easily fall into the local op-
timum. Second, the original HHO and EES are deeply fused to maxi-
mize their performance. Third, an extensive study of ESHHO was per-
formed on 29 numerically optimized test functions (including 23 classic
basic test functions and 6 composite test functions from the CEC2017
special session to analyze its ability to exploitation, exploration, the bal-
ance of exploration and exploitation and convergence. The experimental
results show that EESHHO exhibits the best overall performance com-
pared to other comparative meta-inspired algorithms. Finally, to further
evaluate the performance of EESHHO, we used two real-world cases as
benchmarks for the experiment: the resource-constrained project sched-
uling problem and the QoS-aware web service composition problem.
Extensive experimental results show that EESHHO is specifically more
competitive than other mainstream meta-heuristic algorithms on the
above two NP-hard combinatorial optimization problems (QoS-aware
web service composition and the resource-constrained project schedul-
ing). In future work, we will try to use EESHHO to solve more real-world
optimization problems. The source code for EESHHO in this paper
can be found at https://www.researchgate.net/profile/Chenyang_Li39/
research and https://aliasgharheidari.com/publications/EESHHO.html.

CRediT authorship contribution statement

ChenYang Li: Conceptualization, Methodology, Resources, Soft-
ware, Writing - original draft, Investigation, Formal analysis. Jun Li:
Writing - review & editing, Resources, Investigation, Supervision, Pro-
ject administration, Funding acquisition. HuiLing Chen: Valida-
tion, Software, Investigation, Formal analysis, Data curation, Resources,
Software. Ali Asghar Heidari: Visualization, Software, Investigation,
Formal analysis, Resources, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was supported by the Science and Technology Plan Project
of Wenzhou, China (No. 2020G0055).

References

Agarwal, A., Colak, S., & Erenguc, S. (2011). A neurogenetic approach for the
resource-constrained project scheduling problem. Computers & Operations Research,
38, 44–50.

Al-Masri, E., & Mahmoud, Q. (2007). Qos-based discovery and ranking of web services.
2007 16th International Conference on Computer Communications and Networks (pp.
529–534).

Banzhaf, W., & Koza, J. (2000). Genetic programming. IEEE Intelligent Systems and their
Application, 15. P.74–84.

Bao, X., Jia, H., & Lang, C. (2019). A novel hybrid harris hawks optimization for color
image multilevel thresholding segmentation. IEEE Access, 7, 76529–76546.

Baykasoglu, A. (2012). Design optimization with chaos embedded great deluge algorithm.
Applied Soft Computing, 12, 1055–1067.

Baykasoğlu, A., & Akpinar, Şener (2015). Weighted superposition attraction (wsa): A
swarm intelligence algorithm for optimization problems – part 1: Unconstrained
optimization. Applied Soft Computing, 37, 520–540.

Baykasoğlu, A., & Akpinar, Şener (2020). Enhanced superposition determination for
weighted superposition attraction algorithm. Soft Computing, 24, 15015–15040.

Baykasoğlu, A., & Şenol, M.E. (2019). Weighted superposition attraction algorithm for
combinatorial optimization. Expert Systems With Applications, 138. 112792.

Beheshti, Z. (2013). A review of population-based meta-heuristic algorithm. In Interna-
tional Journal of Advances in Soft Computing and its Applications (pp. 1–35). volume
5.

Birogul, S. (2019). Hybrid harris hawk optimization based on differential evolution
(hhode) algorithm for optimal power flow problem. IEEE Access, 7, 184468–184488.

Bäck, T., & Schwefel, H.-P. (1993). An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1, 1–23.

Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., & Kochut, K.J. (2004). Quality of service
for workflows and web service processes. Journal of Web Semantics, 1, 281–308.

Chandra, M., & Niyogi, R. (2019). Web service selection using modified artificial bee
colony algorithm. IEEE Access, 7, 88673–88684.

Chao, M., Kai, C., & Zhiwei, Z. (2020). Research on tobacco foreign body detection device
based on machine vision. Transactions of the Institute of Measurement and Control.
(p. 0142331220929816)..

Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z., & Gandomi, A.H. (2020).
Multi-population differential evolution-assisted harris hawks optimization:
Framework and case studies. Future Generation Computer Systems, 111, 175–198.

Chen, H., Jiao, S., Wang, M., Heidari, A.A., & Zhao, X. (2020). Parameters identification
of photovoltaic cells and modules using diversification-enriched harris hawks
optimization with chaotic drifts. Journal of Cleaner Production, 244. 118778.

Chen, R.-M. (2011). Particle swarm optimization with justification and designed
mechanisms for resource-constrained project scheduling problem. Expert Systems
with Applications, 38, 7102–7111.

Chen, R.-M. (2011). Particle swarm optimization with justification and designed
mechanisms for resource-constrained project scheduling problem. Expert Systems
With Applications, 38, 7102–7111.

Chen, W., Shi, Y.-J., Teng, H.-F., Lan, X.-P., & Hu, L.-C. (2010). An efficient hybrid
algorithm for resource-constrained project scheduling. Information Sciences, 180,
1031–1039.

Chen, W.-N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.-H., Chung, H.S.-H., … Shi, Y.-H. (2013).
Particle swarm optimization with an aging leader and challengers. IEEE Transactions
on Evolutionary Computation, 17, 241–258.

Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial foraging optimization
algorithm: theoretical foundations, analysis, and applications. Foundations of
computational intelligence volume 3 (pp. 23–55). Springer.

Dorigo, M., Birattari, M., & Stützle, T. (2006). Ant colony optimization: Artificial ants as
a computational intelligence technique. IEEE Computational Intelligence Magazine, 1,
28–39.

Elsayed, S., Sarker, R., Ray, T., & Coello, C.C. (2017). Consolidated optimization algorithm
for resource-constrained project scheduling problems. Information Sciences, 418,
346–362.

Emary, E., Zawbaa, H.M., & Sharawi, M. (2019). Impact of lèvy flight on modern
meta-heuristic optimizers. Applied Soft Computing, 75, 775–789.

Fang, C., & Wang, L. (2012). An effective shuffled frog-leaping algorithm for
resource-constrained project scheduling problem. Computers & Operations Research,
39, 890–901.

Formato, R.A. (2008). Central force optimization: A new nature inspired computational
framework for multidimensional search and optimization. NICSO, 129, 221–238.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the American Statistical Association, 32, 675–701.

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

20 C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529

Fu, X., Fortino, G., Li, W., Pace, P., & Yang, Y. (2019). Wsns-assisted opportunistic network
for low-latency message forwarding in sparse settings. Future Generation Computer
Systems, 91, 223–237.

Fu, X., Fortino, G., Pace, P., Aloi, G., & Li, W. (2020). Environment-fusion multipath
routing protocol for wireless sensor networks. Information Fusion, 53, 4–19.

García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences, 180,
2044–2064.

Gavvala, S.K., Jatoth, C., Gangadharan, G., & Buyya, R. (2019). Qos-aware cloud service
composition using eagle strategy. Future Generation Computer Systems, 90, 273–290.

Goldberg (2008). Genetic Algorithms.
Goldberg, D.E., & Holland, J.H. (1988). Genetic algorithms and machine learning. Machine

Learning, 3, 95–99.
Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project

scheduling. Naval Research Logistics, 45, 733–750.
Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M.M., & Chen, H. (2019).

Harris hawks optimization: Algorithm and applications. Future Generation Computer
Systems, 97, 849–872.

Huang, B., Li, C., & Tao, F. (2014). A chaos control optimal algorithm for qos-based service
composition selection in cloud manufacturing system. Enterprise Information Systems,
8, 445–463.

Huang, X., & Yang, L. (2019). A hybrid genetic algorithm for multi-objective flexible job
shop scheduling problem considering transportation time. International Journal of
Intelligent Computing and Cybernetics.

Hwang, C.R. (1988). Simulated annealing: Theory and applications. Acta Applicandae
Mathematica, 12, 108–111.

Jaeger, M., Rojec-Goldmann, G., & Muhl, G. (2004). Qos aggregation for web service com-
position using workflow patterns. In Proceedings. Eighth IEEE International Enterprise
Distributed Object Computing Conference, 2004. EDOC 2004. (pp. 149–159).

Jia, H., Lang, C., Oliva, D., Song, W., & Peng, X. (2019). Dynamic harris hawks
optimization with mutation mechanism for satellite image segmentation. Remote
Sensing, 11, 1421.

Kadam, S.U., & Mane, S.U. (2015). A genetic-local search algorithm approach for resource
constrained project scheduling problem. 2015 International Conference on Computing
Communication Control and Automation (pp. 841–846).

Kang, F., Li, J., & Ma, Z. (2011). Rosenbrock artificial bee colony algorithm for accurate
global optimization of numerical functions. Information Sciences, 181, 3508–3531.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. Journal of Global
Optimization, 39, 459–471.

Kennedy, J., & Eberhart, R. (2002). Particle swarm optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on (pp. 1942–1948). volume 4.

Kim, J.-L., & Ellis, R.D. (2010). Comparing schedule generation schemes in
resource-constrained project scheduling using elitist genetic algorithm. Journal of
Construction Engineering and Management-asce, 136, 160–169.

Klein, R. (2000). Project scheduling under time-varying resource constraints. International
Journal of Production Research, 38, 3937–3952.

Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization
based hyper-heuristic algorithm for the classic resource constrained project scheduling
problem. Information Sciences, 277, 680–693.

Li, C., Li, J., & Chen, H. (2020). A meta-heuristic based approach for qos-aware service
composition. IEEE Access. 1–1.

Li, J., Zheng, X.-L., Chen, S.-T., Song, W.-W., & Chen, D.-R. (2014). An efficient and
reliable approach for quality-of-service-aware service composition. Information
Sciences, 269, 238–254.

Li, S., Chen, H., Wang, M., Heidari, A.A., & Mirjalili, S. (2020). Slime mould algorithm: A
new method for stochastic optimization. Future Generation Computer Systems, 111,
300–323.

Liu, E., Li, W., Cai, H., & Peng, S. (2019). Formation mechanism of trailing oil in product
oil pipeline. Processes, 7, 7.

Luo, J., Chen, H., zhang, Q., Xu, Y., Huang, H., & Zhao, X. (2018). An improved grasshop-
per optimization algorithm with application to financial stress prediction. Applied
Mathematical Modelling, 64, 654–668.

Lv, Q., Liu, H., Wang, J., Liu, H., & Shang, Y. (2020). Multiscale analysis on spatiotemporal
dynamics of energy consumption co2 emissions in china: Utilizing the integrated of
dmsp-ols and npp-viirs nighttime light datasets. Science of the Total Environment,
703. 134394.

Lv, X., Li, N., Xu, X., & Yang, Y. (2020). Understanding the emergence and development
of online travel agencies: a dynamic evaluation and simulation approach. Internet
Research. doi:10.1108/INTR-11-2019-0464.

Lv, Z., & Kumar, N. (2020). Software defined solutions for sensors in 6g/ioe. Computer
Communications, 153, 42–47.

Lv, Z., Li, X., Lv, H., & Xiu, W. (2019). Bim big data storage in webvrgis. IEEE Transactions
on Industrial Informatics, 16, 2566–2573.

Lv, Z., & Qiao, L. (2020). Analysis of healthcare big data. Future Generation Computer
Systems, 109, 103–110. doi:10.1016/j.future.2020.03.039.

Lv, Z., & Qiao, L. (2020). Deep belief network and linear perceptron based cognitive
computing for collaborative robots. Applied Soft Computing. (p. 106300).

Lv, Z., & Song, H. (2019). Mobile internet of things under data physical fusion technology.
IEEE Internet of Things Journal, 7, 4616–4624.

Lv, Z., & Xiu, W. (2020). Interaction of edge-cloud computing based on sdn and nfv for
next generation iot. IEEE Internet of Things Journal, 7, 5706–5712. doi:10.1109/
JIOT.2019.2942719.

Maharana, D., Kommadath, R., & Kotecha, P. (2017). Dynamic yin-yang pair optimization
and its performance on single objective real parameter problems of cec 2017. 2017
IEEE Congress on Evolutionary Computation (CEC) (pp. 2390–2396).

Mendes, J.J., Gonçalves, J.F., & Resende, M.G. (2009). A random key based genetic
algorithm for the resource constrained project scheduling problem. Computers &
Operations Research, 36, 92–109.

Mirjalili, S. (2016). Sca: A sine cosine algorithm for solving optimization problems.
Knowledge Based Systems, 96, 120–133.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in
Engineering Software, 95, 51–67.

Mirjalili, S., Mirjalili, S.M., & Lewis, A. (2014). Grey wolf optimizer. Advances in
Engineering Software, 69, 46–61.

Neapolitan, R., & Naimipour, K. (2009). Foundations of algorithms (fourth ed.). Jones &
Bartlett Learning.

Niu, P., Niu, S., & Chang, L., et al. (2019). The defect of the grey wolf optimization
algorithm and its verification method. Knowledge-Based Systems, 171, 37–43.

Nobile, M.S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., & Pasi, G. (2017).
Fuzzy self-tuning pso: A settings-free algorithm for global optimization. Swarm and
Evolutionary Computation, 39, 70–85.

Pan, W.-T. (2012). A new fruit fly optimization algorithm: Taking the financial distress
model as an example. Knowledge Based Systems, 26, 69–74.

Proon, S., & Jin, M. (2011). A genetic algorithm with neighborhood search for the
resource-constrained project scheduling problem. Naval Research Logistics (NRL), 58,
73–82.

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). Gsa: A gravitational search
algorithm. Information Sciences, 179, 2232–2248.

Rechenberg, I. (1978). Evolutionsstrategien. Berlin Heidelberg: Springer.
Ridha, H.M., Heidari, A.A., Wang, M., & Chen, H. (2020). Boosted mutation-based harris

hawks optimizer for parameters identification of single-diode solar cell models.
Energy Conversion and Management, 209. 112660.

Shi, K., Wang, J., Tang, Y., & Zhong, S. (2020). Reliable asynchronous sampled-data
filtering of t–s fuzzy uncertain delayed neural networks with stochastic switched
topologies. Fuzzy Sets and Systems, 381, 1–25.

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary
Computation, 12, 702–713.

Storn, R., & Price, K. (1997). Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization, 11,
341–359.

Sun, G., Xu, G., & Jiang, N. (2020). A simple differential evolution with time-varying
strategy for continuous optimization. Soft Computing, 24, 2727–2747.

Sun, G., Yang, B., Yang, Z., & Xu, G. (2019). An adaptive differential evolution with
combined strategy for global numerical optimization. Soft Computing, 1–20.

Wang, H.-C., Lee, C.S., & Ho, T.H. (2007). Combining subjective and objective qos
factors for personalized web service selection. Expert Systems With Applications, 32,
571–584.

Wang, L., & Fang, C. (2012). A hybrid estimation of distribution algorithm for solving the
resource-constrained project scheduling problem. Expert Systems with Applications,
39, 2451–2460.

Wang, L., Zeng, Y., & Chen, T. (2015). Back propagation neural network with adaptive
differential evolution algorithm for time series forecasting. Expert Systems With
Applications, 42, 855–863.

Wang, S., Zhang, K., van Beek, L.P., Tian, X., & Bogaard, T.A. (2020). Physically-based
landslide prediction over a large region: Scaling low-resolution hydrological model
results for high-resolution slope stability assessment. Environmental Modelling &
Software, 124. 104607.

Wang, X., Xu, X., Sheng, Q.Z., Wang, Z., & Yao, L. (2019). Novel artificial bee colony
algorithms for qos-aware service selection. IEEE Transactions on Services Computing,
12, 247–261.

Wei, Y., Lv, H., Chen, M., Wang, M., Heidari, A.A., Chen, H., & Li, C. (2020). Predicting
entrepreneurial intention of students: An extreme learning machine with gaussian
barebone harris hawks optimizer. IEEE Access, 8, 76841–76855.

Wen, D., Zhang, X., Liu, X., & Lei, J. (2017). Evaluating the consistency of current
mainstream wearable devices in health monitoring: a comparison under free-living
conditions. Journal of Medical Internet Research, 19. e68.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1, 67–82.

Wu, T., Xiong, L., Cheng, J., & Xie, X. (2020). New results on stabilization analysis
for fuzzy semi-markov jump chaotic systems with state quantized sampled-data
controller. Information Sciences, 521, 231–250.

Xie, J., Wen, D., Liang, L., Jia, Y., Gao, L., & Lei, J. (2018). Evaluating the validity
of current mainstream wearable devices in fitness tracking under various physical
activities: Comparative study. JMIR mHealth and uHealth, 6. e94.

Xu, Y., Chen, H., Heidari, A.A., Luo, J., Zhang, Q., Zhao, X., & Li, C. (2019). An efficient
chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert
Systems With Applications, 129, 135–155.

Yang, S., Deng, B., Wang, J., Li, H., Lu, M., Che, Y., … Loparo, K.A. (2019). Scalable
digital neuromorphic architecture for large-scale biophysically meaningful neural
network with multi-compartment neurons. IEEE Transactions on Neural Networks and
Learning Systems, 31, 148–162.

Yang, X.-S., & Deb, S. (2009). Cuckoo search via lèvy flights. In 2009 World Congress on
Nature & Biologically Inspired Computing (NaBIC) (pp. 210–214).

Zamani, R. (2013). A competitive magnet-based genetic algorithm for solving the
resource-constrained project scheduling problem. European Journal of Operational
Research, 229, 552–559.

Zeng, H.-B., Liu, X.-G., Wang, W., & Xiao, S.-P. (2019). New results on stability analysis
of systems with time-varying delays using a generalized free-matrix-based inequality.
Journal of the Franklin Institute, 356, 7312–7321.

Zhang, H., Qu, S., Li, H., Luo, J., & Xu, W. (2020). A moving shadow elimination method
based on fusion of multi-feature. IEEE Access, 8, 63971–63982.

Zhao, C., & Li, J. (2020). Equilibrium selection under the bayes-based strategy updating
rules. Symmetry, 12, 739.

Source codes available at: https://aliasgharheidari.com

UN
CO

RR
EC

TE
D

PR
OO

F

C. Li et al. / Expert Systems With Applications xxx (xxxx) 114529 21

Zheng, X.-L., & Wang, L. (2015). A multi-agent optimization algorithm for resource
constrained project scheduling problem. Expert Systems with Applications, 42,
6039–6049.

Zhu, B., Ma, S., Xie, R., Chevallier, J., & Wei, Y.-M. (2018). Hilbert spectra and empirical
mode decomposition: A multiscale event analysis method to detect the impact of
economic crises on the european carbon market. Computational Economics, 52,
105–121.

Zhu, B., Pang, R., Chevallier, J., Wei, Y.-M., & Vo, D.-T. (2019). Including intangible costs
into the cost-of-illness approach: a method refinement illustrated based on the pm 2.5
economic burden in china. The European Journal of Health Economics, 20, 501–511.

Ziarati, K., Akbari, R., & Zeighami, V. (2011). On the performance of bee algorithms
for resource-constrained project scheduling problem. Applied Soft Computing, 11,
3720–3733.

Fu, X., Pace, P., Aloi, G., Yang, L., & Fortino, G. (2020). Topology Optimization Against
Cascading Failures on Wireless Sensor Networks Using a Memetic Algorithm.
Computer Networks, 177, 107327. https://doi.org/10.1016/j.comnet.2020.107327.

Cao, B., Zhao, J., Gu, Y., Ling, Y., & Ma, X. (2020). Applying graph-based differential
grouping for multiobjective large-scale optimization. Swarm and Evolutionary
Computation, 53, 100626. doi:https://doi.org/10.1016/j.swevo.2019.100626.

Cao, B., Fan, S., Zhao, J., Yang, P., Muhammad, K., & Tanveer, M. (2020).
Quantum-enhanced multiobjective large-scale optimization via parallelism. Swarm
and Evolutionary. Computation, 57, 100697. https://doi.org/10.1016/j.swevo.2020.
100697.

Cao, B., Zhao, J., Yang, P., Gu, Y., Muhammad, K., … Rodrigues, J. J. (2019).
Multiobjective 3-D Topology Optimization of Next-Generation Wireless Data Center
Network. IEEE Transactions on Industrial Informatics, 16(5), 3597–3605.

Chen, H., Qiao, H., Xu, L., Feng, Q., & Cai, K. (2019). A Fuzzy Optimization Strategy for the
Implementation of RBF LSSVR Model in Vis–NIR Analysis of Pomelo Maturity. IEEE
Transactions on Industrial Informatics, 15(11), 5971–5979.

XueQ. ZhuY. WangJ. 2019 Joint Distribution Estimation and Naïve Bayes Classification
under Local Differential Privacy," inIEEE Transactions on Emerging Topics in Comput-
ing10.1109/TETC.2019.2959581

Zhang, X., Wang, Y., Chen, X., Su, C. Y., Li, Z., Wang, C., & Peng, Y. (2018). Decentralized
adaptive neural approximated inverse control for a class of large-scale nonlinear
hysteretic systems with time delays. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 49(12), 2424–2437.

ZhangH. QiuZ. CaoJ. Abdel-AtyM. XiongL. Nov. 2020 Event-Triggered Synchroniza-
tion for Neutral-Type Semi-Markovian Neural Networks With Partial Mode-Dependent
Time-Varying Delays," inIEEE Transactions on Neural Networks and Learning Sys-
tems31114437445010.1109/TNNLS.2019.2955287

Zhang, Z., Liu, M., Zhou, M., & Chen, J. (2020). Dynamic reliability analysis of nonlinear
structures using a Duffing-system-based equivalent nonlinear system method.
International Journal of Approximate Reasoning, 126, 84–97.

ZhangC. ChenZ. WangJ. LiuZ. ChenC. L. P. 2021 Fuzzy Adaptive Two-Bit-Trig-
gered Control for a Class of Uncertain Nonlinear Systems With Actuator Failures and
Dead-Zone ConstraintIEEE Transactions on Cybernetics51121022110.1109/TCYB.
2020.2970736

Hu, J., Chen, H., Heidari, A. A., Wang, M., Zhang, X., Chen, Y., & Pan, Z. (2020).
Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights,
balance, diversity, and feature selection. Knowledge-Based Systems, 213, 106684.
https://doi.org/10.1016/j.knosys.2020.106684.

Qiu, T., Shi, X., Wang, J., Li, Y., Qu, S., Cheng, Q., & Sui, S. (2019). Deep learning: A
rapid and efficient route to automatic metasurface design. Advanced Science, 6(12),
1900128.

Hu, J., Zheng, B., Wang, C., Zhao, C., Hou, X., Pan, Q., & Xu, Z. (2020). A survey on
multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road
environments. Frontiers Inf. Technol. Electron. Eng., 21(5), 675–692.

Source codes available at: https://aliasgharheidari.com

https://doi.org/10.1016/j.comnet.2020.107327
https://doi.org/10.1016/j.swevo.2020.100697
https://doi.org/10.1016/j.swevo.2020.100697
https://doi.org/10.1016/j.knosys.2020.106684

	Memetic Harris Hawks Optimization: Developments and perspectives on project scheduling and QoS-aware web service composition☆
	Keywords
	Abstract
	Introduction
	The proposed HHO-based method
	Elite evolution strategy
	Elite natural evolution
	Elite random mutation
	Parameter setting

	Elite Evolution Strategy with Harris Hawks Optimization (EESHHO)
	Transition between exploration and exploitation
	Exploration stage
	Exploitation stage

	Pseudocode of HHO and computational complexity

	Performance study
	Mathematical optimization problems
	Evaluation of exploitation and exploration capabilities
	Balanced performance evaluation between exploration and exploitation
	Evaluation of convergence performance

	EESHHO for resource-constrained project scheduling problem
	Experimental results of RCPSP

	EESHHO for QoS-aware web service composition
	Experimental setup and metrics
	Evaluate comparison algorithms

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

